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Power Loss in Electromagnetic Screens
To the Editor, ** Wireless Engineer.”

Sir,—In the article by Davidson, Looser and
Simmonds, appearing in your January issue, the
eddy current density in the infinite shielding plane
is derived theoretically for a single wire loop, while
the measurements were made by using a coil, of
length comparable to its distance from the screen,
in order to energize this screen.

It is quite easy to extend the method of the
authors of the above article in order to obtain an
expression for the eddy current density when the
energizing factor is a coil, instead of a single loop,
and I should like to do so here :

Let the coil be situated so that its axis is per-
pendicular to the infinite shielding plane and the
distance of its middle plane from the shield is g,
while its length is 2¢. Using the same notation as
in the above-mentioned article and the same units,
one can just as easily show that the magnetic
potential of the coil is given now by the expression
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where I is the current per turn, # the number of
turns per unit length, and Z the longitudinal co-
ordinate of a point situated on the coil.

The magnetic potential of the eddy currents is,

then,
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and, through the same approximation, as used by
Davidson, Looser and Simmonds, we find that, at
high frequencies,
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and, accordingly,
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By writing %% = 4bp/[(b + p)? + Z2], we obtain,
with the authors,
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Referring, now, to the integral {formulae for

complete elliptic constants, as given by Jahnke and
Emde : “ Tables of Functions '’ (Dover Publications
—New York 1943) p. 78, and writing, also,

u = 4bpf[(b + p)? + (a + )7
and 02 = 4bp/((b + p)* + (a — 0)*]
we obtain, finally,

12
iy = P COS (b) {(I/u) [2E, — (2 — 4 K]
P

— (o) 2E, — (2 — vﬂ)m}

the subscripts denoting the moduli of K and E.

We may still simplify this expression by using the
notation of Jahnke and Emde, and, actually,
£ 172
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The complete elliptic integral C appearing in the
above final expression for the eddy current density
is tabulated for intervals of 0.01 of k% on p. 82 of
the above edition of Jahnke & Emde.

C. A. Srocos.

m

Stanford University,
California, U.S.A.

Beam Tetrodes
To the Editor, * Wireless Engineer

Sir,—It is generally recognised that when the
primary current density flowing into the screen-to-
anode space falls below a limiting value, it is not
then always possible to ensure the formation of
a potential minimum in this space by the
charges due to primary electrons alone; this
situation is especially true when the anode voltage
is approximately one-quarter of the screen voltage.
It has consequently been suggested by several
writers that the space charge arising from secondary
electrons plays an important role in producing a
potential minimum when the space charge due to
primary electrons is inadequate. The computation
of the magnitude of the effect is fairly difficult,
and can only be performed if there is suffcient data
regarding the amount of the possible emission and
the velocity distribution.

A great simplification can be obtained, however,
if we may postulate that the secondary electrons
can be emitted copiously with zero velocities of
emission ; we then have the condition that the
secondary electron flow is limited to the value which
sets up just enough additional space charge in the
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screen-to-anode space to reduce (dV/dx) at the anode
to zero.

If this assumption is made the equation giving
the potential distribution in the screen to anode
space is

a2V 4= [ Ip Ig ]
dx? ‘\/26/m VTV AT T

‘Where Is is the secondary current density

Ip is the primary current density.

If Is/Ip is denoted by y, it can be shown that the
following equation serves to determine y :—

(1—W)3r
VTp = A
A/\/W‘z T2 — W,
73 +v
Where
Ip V2 e/m V32 Vv
== Ip=——"" — = .2
Jr Ip 2 97 X2 g Vy
V; = screen voltage
V, == anode voltage
%, = screen-to-anode gap.

Ip is, of course, the current density in a plane
diode of anode voltage V; and gap #,. The results
show that for Jp = 1, y does not exceed 0.2, even
when W, =1 Jp=1 may be considered to
correspond to a current density less than half the
peak current density, and the analysis confirms that
the space charge due to secondary electrons does in
fact considerably help to suppress the retrograde
flow of secondary electrons.

S. Roppa.

Enfield, Middx.

Spectrum of a Phase- or Frequency-Modulated
Wave

To the Editor, ** Wireless Engineer”’

Sir,—In a paper in Wireless Engineer for March
1944, Mr. F. M. Colebrook pointed out some inter-
esting features of the spectrum of a wave sinusoidally
modulated in phase or frequency. The object of
the present note is to generalize these results some-
what and in particular to consider the case in
which the carrier frequency is an integral or half-
integral multiple of the modulation frequency.
In this case each sidewave is a doublet and in
general the mean square value of the wave is not
equal to half the square of the amplitude.

A general representation of a wave of unit ampli-
tude sinusoidally modulated in phase or frequency
is
b jy = expjlw + msin (pt + ¢)] (1)
and by taking the real or imaginary part of z and
by giving ¢ any value the complete range of cases
can be considered.

The wave can be expanded into the spectrum

=X 1

z = exp (joot) 2 Ja(m) expjr(pt + ¢) .. (2)
giving x = cos [wet + m sin (pt + ¢)]

=3 J,cos[(wy + np)t +ng] .. (3)

y = sin [we? + msin (pt + ¢)]
=3 Jasin [(wg + np)t + ng] .. (4)

Since # assumes all values from — oo to 4+ oo it
is seen that when # is negative and greater in
magnitude than wy/p the frequency terms become
negative but with the identities

cos (— gt + n¢) = cos (gt — n¢)

sin (— ¢t + n¢) = — sin (¢t — n¢)
are transformied into the corresponding positive
frequencies. This implies that there are two series
of spectral lines :

(i) with % > — %’
which for convenience may be termed the positive
series and the negative series respectively.

A special case is that in which the two senes
coincide in frequency which occurs when 2wgfp is
either an integer or a half-integer. If 2wy/p = N

it is seen that the nth and the —(N + n)th side-
waves coincide and have the frequency

w=w+np=—[wg— (N+n)p] .. (5)

when N is even the lowest frequency is zero and
corresponds to the single (—4N th) component ;
when n is odd the lowest frequency is p/2 and is

J
i Ith and

Wo

and (i) with # < — —

a doublet corresponding to the —
N+4+1
2

th components.

The spectrum (2) may then be written
o«
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where « is related to 7 by equation (5) and 7,
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+ J_v-nexp[—7

. £
15 —

even except that only one term of zero frequency is
to be included in the summation.

The coincidence of the two series of sidewaves
affects the calculation of the mean square value of

the wave. \When they are not coincident the mean
square value is as Colebrook showed
- B
==X =% .. .. .. (7
— ®

In the case of coincidence the mean square
value may be greater or less than { depending upon
the values of N and ¢. The value may be found
either by summing the squares of the resultant
side-wave amplitudes given by equation (6) or,
more directly, averaging by integration over a
period 2n/p of the modulation frequency. Since

WY = et =
it is only necessary to find #2% and y? is then also
determined. Now

= 2i I + cos [2Npt t 2m sin (pt + $)] d(pt)
=31+ (=) Jx(2m)cos N¢] .. .. (8)

by well-known integral formulae. The fractional

departure of x% or y? from  cannot exceed [y (2m)
and in practice this will be an extremely small
quantity since wy (= 3Np) is always large compared
with the maximum frequency excursion dw (=: mp).
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